Crowdfunding since 2010

Learn AIfES: Become part of the crowd for the open source project AIfES and join us for the free hands-on webinar to get you started

Lack of standards and training features preventing the use of AI on your hardware and you're almost ready to get new devices? At Learn AIfES we are working on making our software framework AIfES usable for everyone. Our webinars are the first stage and we need your help as a maker, student or industry employee to do so! Become part of the AIfES crowd, use AI and contribute to education and sustainability through digitalization at the same time.
Privacy notice
Funding period
10/6/22 - 11/30/22
Realisation
Beginning of 2023
Website & Social Media
Minimum amount (Start level): €
30,000 €
City
Duisburg
Category
Technology
Project widget
Embed widget
Primary sustainable development goal
4
Education
Sponsored by
27.10.2022

Questions? Answers!

Lea Krammer
Lea Krammer5 min Lesezeit

German version

We answer your questions about the AI framework and Learn AIfES. If you want to know even more, don't be afraid to keep asking our experts here on the wall or on LinkedIn.

What do I need to get started with AIfES?

Since AIfES is open source and therefore accessible to everyone for free, you can basically get started right away! For an easy start we would like to offer you free webinars with Learn AIfES. No matter if you are already a professional or a newbie in the field of machine learning, we want to teach you AIfES and turn you into real AI experts.

What devices does AIfES run on?

The great thing about AIfES is that it can be used on almost any system, whether it's a microcontroller, IoT device, Raspberry PI, PC or smartphone. So you can skip buying new hardware and get started right away!

For which ML problems is AIfES suitable?

Basically for any machine learning problem that you can solve with complex neural networks. You still need inspiration? Our demonstrators can help: gesture recognition, color and object recognition, but also an interactive tic-tac-toe game plus the corresponding code.
Are you smarter than AIfES? Try it out:Tic-Tac-Toe Simulator.

Learn AIfES and quality education

.
The project supports the UN Sustainable Development Goal to advance AI for quality education. This goal aims to ensure inclusive, equitable, and quality education and promote lifelong learning opportunities for all.
Through your support, you will help the Learn AIfES team bring the free webinars and possible other cool formats and developments to the world. True to the open source idea, the results will be made freely available to all.

Learn AIfES and climate protection

Deep Learning on high performance computers can emit enormous amounts of CO2. In 2019, the University of Massachusetts created a life cycle assessment for training large AI models. For example, the process of natural language processing (NLP) can emit more than 283.9 tons of CO₂. That's nearly five times the lifetime emissions of an average American car. Because of this, experts are calling for more efficient algorithms and models, as well as hardware that uses less energy (Strubell et al. 2019).
As our project gives individuals, as well as industry, a framework to do exactly that, we are giving it our all to support the UN's Sustainable Development Goal of climate action.

What is so exciting about Tiny ML?

According to the TinyML Foundation's definition, Tiny Machine Learning (TinyML) is a rapidly growing field of machine learning technologies and applications. It encompasses hardware, algorithms, and software capable of analyzing sensor data on the sensor node at extremely low power (typically in the mW range and below), enabling a variety of applications even on battery-powered devices. Rapid progress is being made. For example, significant advances have been made in algorithms, networks, and models with a size of 100 kB and less, and the first low-power applications have been developed in the areas of image processing and audio.
AIFES is a pioneer and first enables data processing on embedded systems. This allows data to be stored on microcontrollers and small IoT devices and processing to be performed without transmission delay.
For more on TinyML, see theTinyML Foundation website.

How can I install AIfES

You can download and install AIfES by searching for "aifes" using the Arduino Library Manager. Alternatively, you can also download it manually. Download the AIfES repository as a ZIP archive and follow the instructions. You can find all information on our GitHub:

To what extent can the architecture be customized?

AIfES was designed as a flexible and extensible toolbox for running and training artificial neural networks on microcontrollers. All layers, loss and optimization functions are modular and can be optimized for different data types and hardware platforms. AIfES currently supports complex neural network types for inference and training.
By the way, the brand new Python AIfES Converter turns any TensorFlow or PyTorch model into an AIfES model with only two lines of Python code. The resulting AIfES model can then be used directly on your microcontroller.


References

  • Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3645-3650, Florence, Italy. Association for Computational Linguistics.
Legal notice
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS
Dr.-Ing. Pierre Gembazka
Finkenstr. 61
47057 Duisburg Deutschland

Nutzungsrechte

Copyright ©Fraunhofer-Gesellschaft und Fraunhofer-Zukunftsstiftung

Alle Rechte vorbehalten. Die Urheberrechte der Inhalte dieser Webseite liegen vollständig bei der Fraunhofer-Gesellschaft und der Fraunhofer-Zukunftsstiftung.

Ein Download oder Ausdruck dieser Veröffentlichungen ist ausschließlich für den persönlichen Gebrauch gestattet. Alle darüber hinaus gehenden Verwendungen, insbesondere die kommerzielle Nutzung und Verbreitung, sind grundsätzlich nicht gestattet und bedürfen der schriftlichen Genehmigung.

Ein Download oder Ausdruck ist darüber hinaus lediglich zum Zweck der Berichterstattung über die Fraunhofer-Gesellschaft und ihrer Institute oder der Fraunhofer-Zukunftsstiftung nach Maßgabe untenstehender Nutzungsbedingungen gestattet:

Grafische Veränderungen an Bildmotiven — außer zum Freistellen des Hauptmotivs — sind nicht gestattet. Es ist stets die Quellenangabe und Übersendung von zwei kostenlosen Belegexemplaren an die oben genannte Adresse erforderlich. Die Verwendung ist honorarfrei.

Haftungshinweis

Wir übernehmen keine Haftung für die Inhalte externer Links. Für den Inhalt der verlinkten Seiten sind ausschließlich deren Betreiber verantwortlich.

Wir sind bemüht, die Projektseite stets aktuell und inhaltlich richtig sowie vollständig anzubieten. Dennoch ist das Auftreten von Fehlern nicht völlig auszuschließen. Das Fraunhofer-Institut bzw. die Fraunhofer-Gesellschaft und die Fraunhofer-Zukunftsstiftung übernehmen keine Haftung für die Aktualität, die inhaltliche Richtigkeit sowie für die Vollständigkeit der in ihrem Webangebot eingestellten Informationen. Dies bezieht sich auf eventuelle Schäden materieller oder ideeller Art Dritter, die durch die Nutzung dieses Webangebotes verursacht wurden.

Geschützte Marken und Namen, Bilder und Texte werden auf unseren Seiten in der Regel nicht als solche kenntlich gemacht. Das Fehlen einer solchen Kennzeichnung bedeutet jedoch nicht, dass es sich um einen freien Namen, ein freies Bild oder einen freien Text im Sinne des Markenzeichenrechts handelt.

share
Learning to Generate AI
www.startnext.com
Facebook
X
WhatsApp
LinkedIn
Xing
Copy link

This video is played by YouTube. By clicking on the play button, you agree to the transfer of necessary personal data (e.g. your IP address) to Google Inc (USA) as the operator of YouTube. For more information on the purpose and scope of data collection, please see the Startnext privacy policy. Learn more